
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 30. November 2020

Markus Püschel, David Steurer

Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 11 HS 20

Exercise Class (Room & TA):

Submi�ed by:

Peer Feedback by:

Points:

Submission: On Monday, 07. December 2020, hand in your solution to your TA before the exercise

class starts. Exercises that are marked by
∗
are challenge exercises. �ey do not count towards bonus

points.

Exercise 11.1 Breadth-First Search.

Execute a breadth-�rst search (Breitensuche) on the following graph starting from vertex A. Use the

algorithm presented in the lecture.

Give the order in which the vertices are enqueued by a breadth-�rst search starting in A. You should

list vertices several times if they are enqueued more than once. When processing the neighbors of a

vertex, process them in alphabetical order.

�e BFS-order is the order in which the vertices are enqueued for the �rst time in a breadth-�rst search.

What is the BFS-order of the above execution? Does it give a topological sorting?

A I C

H E G

B F D

Solution:�e order in which the vertices are enqueued by a breadth-�rst search is

A, H, I, B, E, C, F, G, G, D, D.

�e BFS-order is A, H, I, B, E, C, F, G, D. It does not give a topological ordering, since there is an edge

(E, I) in the graph.

Exercise 11.2 Shortest paths by hand (1 Point).

At the end of the lecture on November 26, we discussed an algorithm for �nding shortests paths when

all edge costs are nonnegative. Here is the pseudo-code for that algorithm, which is typically called

Dijkstra’s algorithm:

function Dijkstra(G, s)
d[s]← 0 . upper bounds on distances from s
d[v]←∞ for all v 6= s
S ← ∅ . set of vertices with known distances

while S 6= V do
choose v∗ ∈ V \ S with minimum upper bound d[v∗]
add v∗ to S
update upper bounds for all v ∈ V \ S:

d[v]← minpredecessor u∈S of v d[u] + c(u, v)
(if v has no predecessors in S, this minimum is∞)

We remark that this version of Dijkstra’s algorithm focuses on illustrating how the algorithm explores

the graph and why it correctly computes all distances from s. You can use this version of Dijkstra’s

algorithm to solve exercises from this sheet.

In order to achieve the best possible running time, it is important to use an appropriate data structure

for e�ciently maintaining the upper bounds d[v] with v ∈ V \ S, which will be discussed during the

lecture on December 3. In the next sheets and the exam you should use the e�cient version of the

algorithm (not the pseudocode described above).

Consider the following weighted directed graph:

s a

b

c

d

t1

5

2

20

8

1

9

5

11

a) Execute the Dijkstra’s algorithm described above by hand to �nd a shortest path from s to each node
in the graph. A�er each step (i.e. a�er each choice of v∗), write down:

1) the upper bounds d[u], for u ∈ V , between s and each node u computed so far,

2) the set M of all nodes for which the minimal distance has been correctly computed so far,

3) and the predecessor p(u) for each node inM .

Solution: When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[t] = ∞, M = {s}, there is
no p(s).

When we choose a: d[s] = 0, d[a] = 1, d[b] = 5 d[c] = d[d] = d[t] = ∞, M = {s, a}, there is no
p(s), p(a) = p(b) = s.

When we choose b: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = d[d] = d[t] =∞, M = {s, a, b}, there is no
p(s), p(a) = s, p(b) = a.

2

When we choose d: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 4, d[t] =∞, M = {s, a, b, c, d},
there is no p(s), p(a) = s, p(b) = a, p(c) = b, p(d) = b.

When we choose c: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 4, d[t] = 15,M = {s, a, b, d, c, t},
there is no p(s), p(a) = s, p(b) = a, p(c) = b, p(d) = b, p(t) = d.

When we choose t: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 4, d[t] = 15,M = {s, a, b, d, c, t},
there is no p(s), p(a) = s, p(b) = a, p(c) = b, p(d) = b, p(t) = d.

b) Change the weight of the edge (b,d) from 1 to −1 and execute Dijkstra’s algorithm on the new

graph. Does the algorithm work correctly (are all distances computed correctly)? In case it breaks,

where does it break?

Solution: �e algorithm works correctly.

When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[t] =∞.

When we choose a: d[s] = 0, d[a] = 1, d[b] = 5, d[c] = d[d] = d[t] =∞.

When we choose b: d[s] = 0, d[a] = 1, d[b] = 3, d[c] =∞, d[d] = d[t] =∞.

When we choose d: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 2, d[t] =∞.

When we choose c: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 2, d[t] = 13.

When we choose t: d[s] = 0, d[a] = 1, d[b] = 3, d[c] = 11, d[d] = 2, d[t] = 13.

c) Now, additionally change the weight of the edge (c,d) from 9 to −10. Show that in this case the

algorithm doesn’t work correctly, i.e. there exists some u ∈ V such that d[u] is not equal to aminimal

distance from s to u a�er the execution of the algorithm.

Solution: �e algorithm doesn’t work correctly, for example, the distance from s to d is 1, but the
algorithm computes exactly the same values of d[·] as in part b), so d[d] = 2.

Exercise 11.3 Robot.

Consider the following game:

�e game is played on a d × d board with four di�erent types of �elds (grassland, water, desert and

mountain). You start at top le� �eld and have to move to the bo�om right �eld. At each turn you

may move to an adjacent �eld (a �eld that shares a border with your current �eld). Moving through a

3

grassland �eld requires 3 minutes, moving through a desert �eld requires 5 minutes, moving through

a mountain �eld requires 7 minutes and you cannot swim (which makes water �elds impassable). You

spend zero time in the starting and target �eld. Youmay assume that there is always at least one possible

way from top le� to bo�om right. �e goal of this exercise is to �nd the fastest way from the top le�

�eld to the bo�om right �eld.

a) Model the problem as a graph problem:

1) Describe your graph. What are the vertices, what are the edges and the weights of the edges?

Solution: �e graph G = (V,E,w) is as follows: V is a set of non-water �elds, and there are

two directed edges (u, v) and (v, u) if and only if �elds u ∈ V and v ∈ V share a border. �e

weight w((u, v)) of an edge (u, v) ∈ E is the time that is required to move through the �eld

v ∈ V (so for a target �eld t and for each edge (u, t) ∈ E, w((u, t)) = 0).

2) What is the graph problem that we are trying to solve?

Solution: Finding the shortest path between the starting �eld s ∈ V and the target �eld t ∈ V
in the graph G = (V,E,w).

3) Solve the problem using an algorithm discussed in the lecture (without modi�cation).

Solution:We can apply Dijkstra’s algorithm to (G, s) to �nd the shortest path between s and t.

b)
∗
Now, we modify the game a li�le bit: You learned how to swim and, thus, moving through a water

�eld requires 11 minutes. However, swimming is very exhausting for you and you cannot swim

through more than w water �elds. Again, you may assume that the game boards are generated in

a way that they are solvable using w of the water �elds. Model the modi�ed problem as a graph

problem. Find a description as graph problem such that you can directly apply one of the algorithms

in the lecture, without modi�cations to the algorithm.

1) Describe your graph. What are the vertices, what are the edges and what are the weights on the

edges?

Solution: �e graph G is as follows: for each non-water non-target �eld a, V contains w + 1
vertices a0, . . . aw, and for each water �eld b, V contains w vertices b1, . . . , bw. For a target �eld
V contains one vertex t.

If non-water �elds a and a′ share a border, then E contains directed edges (ai, a
′
i) and (ai, a

′
i)

for all i = 0, 1, . . . , w.

If the target �eld t shares a border with some non-water �eld a, then E contains directed edges

(ai, t) for all i = 0, 1, . . . , w. If the target �eld t shares a border with some water �eld b, then
E contains directed edges (bi, t) for all i = 1, . . . , w.

If a non-water non-target �eld a and a water �eld b share a border, then E contains directed

edges (ai, bi+1) and (bi, ai) for all i = 0, 1, . . . , w. If two water �elds b and b′ share a border,

then E contains directed edges (bj , b
′
j+1) and (b′j , bj+1) for all j = 1, . . . , w − 1.

�e weight of an edge (u, v) ∈ E is the time that is required to move through the �eld v ∈ V
(so for a target �eld t and for each edge (u, t) ∈ E its weight is 0).

You can understand the graphG as w+ 1 copies (levels) of the graph from part a), connected in

such a way that matches the described problem. Each copy has the following crucial property:

if one stands at a vertex belonging to the i-th level of G, then we are still allowed to use w − i
water �elds up to the target vertex t.

4

Indeed, we start the run on the 0-th level, (which makes sense since at the beginning we have w
water �elds le� at our disposal). From that point on, we can always move within a given level i
exactly like in the graph from part a), but we can additionally make water-�eld moves. Only, if

we do such a move, we will need to keep track that we can use one water-�eld less than before.

�erefore, we direct each edge corresponding to a water-�eld move to the corresponding end-

vertex in the (i + 1)-st level. By construction, the w-th level of the graph does not allow us to

use any additional water-�eld moves, as desired.

Finally, it’s important to mention that we do not need to use all of our possible water-�eld moves

to reach the target. Hence, we merge all vertices corresponding to t together, making the target

vertex reachable from any level.

2) What is the graph problem that we are trying to solve?

Solution: Finding the shortest path between the vertex s0 ∈ V that corresponds to the starting

�eld s and the target vertex t ∈ V in the graph G.

3) Solve the problem using an algorithm discussed in the lecture (without modi�cation).

Solution:We can apply Dijkstra’s algorithm to (G, s0) to �nd the shortest path between s0 and
t.

Exercise 11.4 Arbitrage.

When trading currencies, arbitrage means to exploit price di�erences in order to pro�t by exchanging

currencies multiple times. For example, on June 2nd, 2009, 1 US Dollar could be exchanged for 95.729

Yen, 1 Yen for 0.00638 Pound sterling, and 1 Pound sterling for 1.65133 US Dollars. If a trader exchanged

1 US Dollar for Yen, exchanged the obtained amount for Pound sterling and �nally exchanged this

amount back to US Dollars, he would have obtained 95.729 · 0.00638 · 1.65133 ≈ 1.0086 US Dollars,

corresponding to a gain of 0.86%.

a) You are given n currencies {1, . . . , n} and an (n×n) exchange rate matrixR with positive rational

number entries. For two currencies i, j ∈ {1, . . . , n} one unit of currency i can be exchanged for

R(i, j) > 0 units of currency j. �e goal is to decide whether an arbitrage opportunity exists, i.e.,

if there exists a sequence of k di�erent currenciesW1, . . . ,Wk ∈ {1, . . . , n} such that R(W1,W2) ·
R(W2,W3) · · ·R(Wk−1,Wk) ·R(Wk,W1) > 1 holds.

Model the above problem as a graph problem. Show how the input can be transformed into a di-

rected, weighted graph G = (V,E,w) that contains a cycle with negative weight if and only if an
arbitrage activity is possible. Justify why G contains a negative cycle if and only if an arbitrage

opportunity exists.

Hint: Using logarithms might be bene�cial because of the property ln(a · b) = ln(a) + ln(b).

Solution. We create a complete graph G = (V,E) with the vertices V = {1, . . . , n}. An edge

(i, j) ∈ E gets the weight w(i, j) = − logR(i, j). �en suppose an arbitrage opportunity with the

sequence of currenciesW1, . . . ,Wk is possible. �en it must be the case that

R(W1,W2) ·R(W2,W3) · . . . ·R(Wk−1,Wk)R(Wk,W1) > 1

⇔ log (R(W1,W2) ·R(W2,W3) · . . . ·R(Wk−1,Wk)R(Wk,W1)) > 0

⇔ logR(W1,W2) + logR(W2,W3) + . . . + logR(Wk−1,Wk) + logR(Wk,W1) > 0

⇔ − logR(W1,W2)− logR(W2,W3)− . . .− logR(Wk−1,Wk)− logR(Wk,W1) < 0

⇔ w(W1,W2) + w(W2,W3) + . . . + w(Wk−1,Wk) + w(Wk,W1) < 0

5

consequentlyG contains a cycle of negative weight. Because we only used equivalence transforma-

tions, the argument applies in both directions.

b) �e Bellman-Ford algorithm can be used to �nd out whether a graph contains negative cycles. A�er

` iterations of the Bellman-Ford loop d[v] is equal to d(s, v)≤`, i.e., the minimum weight of a s-v
walk with at most ` edges. A graph contains a negative cycle that can be reached from s if and only
if there exists a vertex v such that d(s, v)≤n−1 6= d(s, v)≤n, where n is the number of vertices.

Use the previous part of this exercise to design an algorithm that decides if an arbitrage opportunity

exists. What is the best running time you can get (in terms of n)?

Solution. Since the graph is complete, any negatively-weighted cycle can be reached from any

vertex, we can run Bellman-Ford to detect a cycle starting from any vertex in G. �ere are |V | =
n vertices and |E| = n(n − 1) ∈ Θ(n2) edges. �e algorithm therefore has a running time of

Θ(|V ||E|) = Θ(n3).

Exercise 11.5 Finding cheap train connections (2 points).

An e�cient vaccine has been found and you can �nally plan your next holiday. You want to visit a city

in Europe and since you care about the environment, you will use only the train. Suppose that there

are n cities in Europe that have a train station, including Zürich, which will be your starting point. You

are wondering about which one you should visit, so you �rst decide to analyze the travel costs.

�ere are some direct train connections between these n cities (not necessarily in both ways), and for

each of these connections you know its cost, which is a positive integer.

For simplicity you can assume that every city has a unique number from {1, . . . , n} and that each city

is represented by its number.

a) Model these cities, direct train connections and their costs as a directed graph: give a precise des-

cription of the vertices, the edges and the weights of the edges of the graphG = (V,E,w) involved.

Solution: Each city is a vertex in the directed graph. Two vertices u, v ∈ V are connected by a

directed edge e ∈ E, if there exists a direct train connection from city u to city v. �e weight w(e)
of the edge e = (u, v), is the cost of the direct train connection from u to v.

In b) and c) you can assume that the directed graph is represented by a data structure that allows you to

traverse the direct predecessors and direct successors of a vertex u in timeO(deg−(u)) andO(deg+(u))
respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is the out-degree of vertex u.

b) You start from Zürich and you want to �ll the array d of minimal traveling costs to each city. �at

is, for each city C , d[C] is the minimal cost that you must pay to travel from Zürich to C by train.

Assume that you are given the graph from a). What is an e�cient algorithm that �lls the array d?

Solution: Dijkstra’s Algorithm can solve this problem e�ciently.

c) It can happen that there are di�erent traveling options fromZürich to some cityC that haveminimal

cost d[C]. In this case, you would like to take the option that requires the least stopovers (i.e. that

uses the fewest direct connections), among those that have minimal cost.

Assume that you are given the graph from a) and the correctly �lled array d. Find an e�cient algo-

rithm that �lls the array ` such that for each cityC , `[C] is the minimal number of direct connections

that you need to use in order to go from Zürich to C with minimal cost (i.e. with cost d[C]). What

is the running time of your algorithm?

6

Solution:�e following DPwill compute theminimal number of direct connections needed in order

to go from Zürich to any other city using minimal cost.

For simplicity, we identify the n cities with {1, . . . , n}. We �rst sort the cities by increasing minimal

cost, i.e. 1 will correspond to Zurich (we need cost 0 to go to Zurich), and for each 1 ≤ i ≤ j ≤ n it

holds that d[i] ≤ d[j].

Dimensions of the DP table:�e DP table is an array of length n.

De�nition of the DP table: DP [i] contains the minimal number of direct connections that are

needed in order to go from Zurich to city i with minimal cost.

Computation of an entry: Initialize DP [1] to 0: since all costs are positive, the cheapest way to

go to Zurich is by not taking any train (i.e. using 0 direct connections).

Let i > 1. Again, since all costs are positive, any cheapest route to city i will only go through

cities j that can be reached with a strictly cheapest cost. In other words, it only uses cities j with

d[j] < d[i], and since we have sorted the cities by increasing cost, j < i. Any city j < i that has a
direct connection to i can be used to get to i with minimal cost if and only if d[i] = d[j] +w((j, i)).
Among those cities, we want to choose one that can be reached with as few direct connections as

possible (while still achieving minimal cost d[j]). �erefore, the entries of DP can be computed as

DP [i] = 1 + min{DP [j] : j < i, (j, i) ∈ E, d[i] = d[j] + w((j, i))},

where the minimum equals in�nity if it is empty (note that the minimum is empty if and only if we

cannot reach i from Zurich, so this is also correct).

Calculation order:We can compute the entries ofDP from smallest to largest, since we have seen

that for computing an entry DP [i] we only need the values DP [j] for j < i.

Running time: First, it takes time O(n log n) to sort the cities by increasing minimal cost. �en,

we need time O(1 + deg−(i)) to compute DP [i], so the running time of the DP itself is

O

(
n∑

i=1

(1 + deg−(i))

)
= O(n + m),

wherem denotes the number of edges in the graph. �us, the total running time isO(n log n+m).

7

